THE CRYSTAL STRUCTURE OF A REARRANGEMENT PRODUCT OF A PERCHLORINATED CAGE AMINE

Robert Bau

Department of Chemistry, University of Southern California Los Angeles, California 90007

(Received in USA 22 November 1971; received in UK for publication 17 April 1972)

I wish to report the molecular structure of the methyl ester of 4-Z-(chlorocyanomethylene)
-1,2,3,6-tetrachlorobicyclo[3.1.0]hex-2-ene-6-syn-carboxylic acid produced by the unusual
room temperature degradation of 4-aminononachlorohomocubane in alkaline t-butanol.

Colorless crystals of $C_{10}H_4Cl_5NO_2$, grown by sublimation, and kindly supplied by Professor K. V. Scherer, were mounted on thin-walled glass capillary tubes. Crystallographic data: Triclinic; space group P1 or P1, a = 8.43 Å, b = 13.28 Å, c = 6.24 Å, $\alpha = 97.5^{\circ}$, $\beta = 106.3^{\circ}$, $\gamma = 95.4^{\circ}$. One complete hemisphere of data, totalling 1312 reflections, was collected on a Nonius CAD-3 automated diffractometer with Mo K α radiation. A zero-moment test² performed on the data indicated that the space group was probably P1.

Initially, attempts were made to solve the phase problem by using Long's program³ which utilizes a reiterative application of Sayre's equation.⁴ Direct use of this program did not lead to a successful solution, however, because the crucial choice of a starting set of signs (in this case, seven) was not made correctly. To solve the problem, it was necessary to apply the symbolic addition procedure⁵ manually to the starting set of 146 reflections (with E > 1.5), using only interactions having probabilities greater than 0.95. In this way, it was possible to express the signs of 94 reflections in terms of 4 symbols. Long's program was now rerun using 4 carefully chosen reflections as variables, and this resulted in a rapid convergence to the correct solution (2 cycles, consistency index 0.993).³ An E-map based on this solution revealed the positions of the five chlorine atoms very clearly, and the rest of the non-hydrogen atom positions were obtained from a difference Fourier map phased by the five chlorine atoms. A series

of least-squares refinement cycles (in which anisotropic temperature factors were assigned to the chlorine atoms) resulted in a final R factor of 7.4%.

The geometry of the molecule is shown in Figure 1, and the bond lengths and angles are given in Table 1. The molecule is based on a [3,1,0] bicyclic framework. Double bonds are inferred to exist between C_2 and C_3 , and between C_4 and C_7 because of their bond lengths (1.318 Å and 1.320 Å resp.) and because of the near-planarity of the $C_1C_2C_3C_4C_5C_7C_8NCl_2Cl_3Cl_4$ fragment. The crystal is racemic, each unit cell containing two mirror-related molecules.

I would like to thank the Petroleum Research Fund (Grant #2059-G3, administered by the American Chemical Society), the National Institutes of Health (Biomedical Sciences Support Grant #FR-07012-04) and the Research Corporation for supporting this research. The help of the University of Southern California Computing Center, in making available its IBM 360/65 computer, is also gratefully acknowledged.

REFERENCES

- 1. K. V. Scherer, accompanying communication.
- 2. E. R. Howells, D. C. Phillips and D. Rogers, Acta Cryst., 3, 210 (1950).
- 3. R. E. Long, Ph.D. Thesis, University of California at Los Angeles, 1965.
- D. Sayre, Acta Cryst., 5, 60 (1952).
- 5. I. L. Karle and J. Karle, Acta Cryst., <u>16</u>, 969 (1963).
- 6. The following computer programs were used in this work:
 - (a) Symbolic addition interaction list:SIGMA 2, by R. Destro, California Institute of Technology
 - (b) Reiterative application of Sayre's equation: REL, by R. E. Long, U.C.L.A.
 - (c) Fourier maps, least squares refinement, geometry: CRYM, by R. E. Marsh, California Institute of Technology
 - (d) Thermal elliposoid plots:

 ORTEP, by C. K. Johnson, Oak Ridge National Laboratory.

c ₁ -c ₂	1.475 (12)	C ₁ -C ₅	1.510 (12)	c ₁ -c ₆	1.501 (12)
c_2 - c_3	1.318 (13)	C ₃ -C ₄	1.448 (12)	C ₄ -C ₅	1.502 (12)
C ₄ -C ₇	1.320 (13)	^C 5 ^{-C} 6	1.526 (12)	C ₆ -C ₉	1.535 (12)
C ₇ -C ₈	1.422 (14)				
$C_1\text{-}C1_2$	1.713 (9)	C ₂ -C1 ₂	1.698 (9)	C ₃ -C1 ₃	1.730 (9)
^C 6 ^{-C1} 5	1.728 (8)	C ₇ -C1 ₄	1.733 (10)		
C ₈ -N	1.140 (16)	C ₉ -O ₁	1.209 (12)	C ₉ -O ₂	1.312 (12)
C ₁₀ -O ₂	1.415 (14)				

Bond Angles (deg.) (Standard deviations in parenthesis)

$^{\text{C1}}_{1}$ - $^{\text{C}}_{1}$ - $^{\text{C}}_{2}$	117.2 (6)	C1 ₅ -C ₆ -C ₁	118.2 (6)
C1 ₁ -C ₁ -C ₅	124.0 (6)	^{C1} 5 ^{-C} 6 ^{-C} 5	116.6 (6)
C1 ₁ -C ₁ -C ₆	120.8 (6)	C1 ₅ -C ₆ -C ₉	110.1 (6)
$^{\mathrm{C}_{2}\text{-}\mathrm{C}_{1}\text{-}\mathrm{C}_{5}}$	104.8 (7)	C ₁ -C ₆ -C ₅	59.8 (6)
C ₂ -C ₁ -C ₆	116.3 (7)	$^{\mathrm{C}}_{1}$ - $^{\mathrm{C}}_{6}$ - $^{\mathrm{C}}_{9}$	121.3 (7)
C ₅ -C ₁ -C ₆	60.9 (6)	C ₅ -C ₆ -C ₉	122.8 (7)
c_{2} - c_{2} - c_{1}	122.2 (7)	C1 ₄ -C ₇ -C ₄	125.6 (7)
C1 ₂ -C ₂ -C ₃	126.1 (7)	C1 ₄ -C ₇ -C ₈	112.3 (8)
C ₁ -C ₂ -C ₃	111.5 (8)	C ₄ -C ₇ -C ₈	122.0 (9)
C1 ₃ -C ₃ -C ₂	123.0 (7)	N-C ₈ -C ₇	177.2 (12)
C1 ₃ -C ₃ -C ₄	125.0 (7)	o ₁ -c ₉ -o ₂	123.2 (9)
C ₂ -C ₃ -C ₄	111.9 (8)	O ₁ -C ₉ -C ₆	125.4 (8)
C ₃ -C ₄ -C ₅	106.0 (7)	$^{\mathrm{O}}{_{2}}^{-\mathrm{C}}{_{9}}^{-\mathrm{C}}{_{6}}$	111.3 (7)
$C_3-C_4-C_7$	133.4 (8)	$^{\mathrm{C_{9}}\text{-}\mathrm{O_{2}}\text{-}\mathrm{C_{10}}}$	118.6 (8)
C ₅ -C ₄ -C ₇	120.6 (8)		
C ₁ -C ₅ -C ₄	105.7 (7)		
C ₁ -C ₅ -C ₆	59.3 (6)		
C ₄ -C ₅ -C ₆	117.1 (7)		

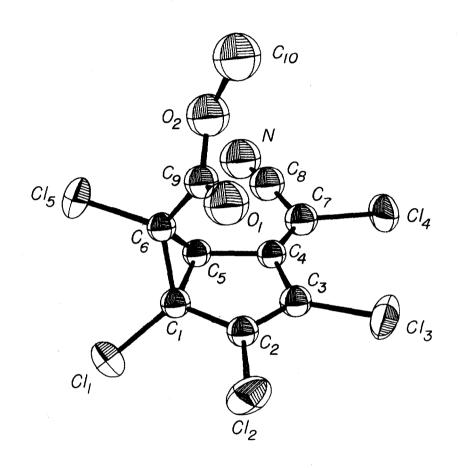


Fig. 1: The molecular geometry of methy1-4-Z-(chlorocyanomethylene)-1,2,3,6,-tetrachlorobicyclo[3.1.0]hex-2-ene-6-<u>syn</u>-carboxylate (the hydrogen atoms are not shown).